function dt64_to_dt
Converts a NumPy datetime64 object to a Python datetime.datetime object by calculating seconds since Unix epoch.
/tf/active/vicechatdev/patches/util.py
1999 - 2004
simple
Purpose
This function provides a safe conversion mechanism from NumPy's datetime64 type to Python's native datetime.datetime type. It's useful when working with mixed datetime representations or when interfacing between NumPy arrays and Python datetime operations. The conversion is done by calculating the time difference from Unix epoch (1970-01-01) in seconds and reconstructing a datetime object.
Source Code
def dt64_to_dt(dt64):
"""
Safely converts NumPy datetime64 to a datetime object.
"""
ts = (dt64 - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 's')
return dt.datetime(1970,1,1,0,0,0) + dt.timedelta(seconds=ts)
Parameters
| Name | Type | Default | Kind |
|---|---|---|---|
dt64 |
- | - | positional_or_keyword |
Parameter Details
dt64: A NumPy datetime64 object to be converted. This should be a valid numpy.datetime64 instance representing a point in time. The function assumes the datetime64 can be converted to seconds since epoch.
Return Value
Returns a Python datetime.datetime object representing the same point in time as the input dt64. The returned datetime object will have the same temporal value but in Python's native datetime format, which can be used with standard Python datetime operations.
Dependencies
numpydatetime
Required Imports
import numpy as np
import datetime as dt
Usage Example
import numpy as np
import datetime as dt
def dt64_to_dt(dt64):
ts = (dt64 - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 's')
return dt.datetime(1970,1,1,0,0,0) + dt.timedelta(seconds=ts)
# Example usage
dt64 = np.datetime64('2023-06-15T14:30:00')
result = dt64_to_dt(dt64)
print(result) # Output: 2023-06-15 14:30:00
print(type(result)) # Output: <class 'datetime.datetime'>
Best Practices
- Ensure the input is a valid numpy.datetime64 object before calling this function
- Be aware that this conversion may lose precision for very high-resolution datetime64 objects (e.g., nanosecond precision)
- The function assumes the datetime64 object can be safely converted to seconds; extremely large or small values may cause overflow
- Consider timezone implications: numpy datetime64 is typically timezone-naive, and the returned datetime.datetime will also be timezone-naive
- For large-scale conversions, consider using pandas.to_datetime() which may be more optimized for batch operations
Tags
Similar Components
AI-powered semantic similarity - components with related functionality:
-
function dt_to_int 66.4% similar
-
function parse_datetime_v1 62.3% similar
-
function cast_array_to_int64 62.0% similar
-
function isdatetime 59.6% similar
-
function numpy_scalar_to_python 53.1% similar